扫码关注公众号           扫码咨询技术支持           扫码咨询技术服务
  
客服热线:400-901-9800  客服QQ:4009019800  技术答疑  技术支持  质量反馈  人才招聘  关于我们  联系我们
产品中心-北京博奥森生物技术有限公司
首页 > 产品中心 > 一抗 > 产品信息
Rabbit Anti-PPAR gamma  antibody (bs-0530R)  
~~~促销代码KT202411~~~
订购热线:400-901-9800
订购邮箱:sales@bioss.com.cn
订购QQ:  400-901-9800
技术支持:techsupport@bioss.com.cn
说明书: 50ul  100ul  200ul
50ul/1180.00元
100ul/1980.00元
200ul/2800.00元
大包装/询价

产品编号 bs-0530R
英文名称 Rabbit Anti-PPAR gamma  antibody
中文名称 过氧化酶活化增生受体γ抗体
别    名 GLM1; CIMT1; NR1C3; PPARG; PPARG1; PPARG2; PPARG5; PPARgamma; Nuclear receptor subfamily 1 group C member 3; PAX8/PPARG Fusion Gene; Peroxisome Proliferator Activated Receptor gamma; Peroxisome proliferator activated nuclear receptor gamma variant 1; Peroxisome proliferator activated receptor gamma 1; Peroxisome Proliferator Activated Receptor gamma; Peroxisome proliferator-activated receptor gamma; PPAR-gamma; PPARG_HUMAN; PPAR-γ; PPAR γ; PPARγ;   
Specific References  (44)     |     bs-0530R has been referenced in 44 publications.
[IF=8.74] Yao Yao. et al. Short-chain fatty acids regulate B cells differentiation via FFAR2 to alleviate rheumatoid arthritis. BRIT J PHARMACOL. 2022 Apr 07  FC ;  Mouse.  
[IF=7.658] Lei Ma. et al. Identification of the anti-fungal drug fenticonazole nitrate as a novel PPARγ-modulating ligand with good therapeutic index: Structure-based screening and biological validation. Pharmacol Res. 2021 Nov;173:105860  WB ;  Mouse.  
[IF=7.419] Fangyuan Chen. et al. Identification of a novel PPARγ modulator with good anti-diabetic therapeutic index via structure-based screening, optimization and biological validation. BIOMED PHARMACOTHER. 2022 Oct;154:113653  WB ;  Mouse.  
[IF=6.684] Lijin Guo. et al. Whole Transcriptome Analysis Reveals a Potential Regulatory Mechanism of LncRNA-FNIP2/miR-24-3p/FNIP2 Axis in Chicken Adipogenesis. Front Cell Dev Biol. 2021; 9: 653798  WB ;  Chicken.  
[IF=6.208] Kaili Cui. et al. Ferulic Acid and P-Coumaric Acid Synergistically Attenuate Non-Alcoholic Fatty Liver Disease through HDAC1/PPARG-Mediated Free Fatty Acid Uptake. INT J MOL SCI. 2022 Jan;23(23):15297  WB ;  Human.  
[IF=6.208] Jing Fan. et al. Syndecan-3 Coregulates Milk Fat Metabolism and Inflammatory Reactions in Bovine Mammary Epithelial Cells through AMPK/SIRT1 Signaling Pathway. INT J MOL SCI. 2023 Jan;24(7):6657  WB ;  Bovine.  
[IF=6.175] Li Kan. et al. m6A demethylase FTO regulate CTNNB1 to promote adipogenesis of chicken preadipocyte. Journal of Animal Science and Biotechnology. 2022 Dec;13(1):1-15  WB ;  Chicken.  
[IF=6.025] Yue-Qiang Huang. et al. Di-2-ethylhexyl phthalate (DEHP) induced lipid metabolism disorder in liver via activating the LXR/SREBP-1c/PPARα/γ and NF-κB signaling pathway. FOOD CHEM TOXICOL. 2022 Jul;165:113119  WB ;  Bird.  
[IF=5.307] Junyuan Tang. et al. Structure-based screening and biological validation of the anti-thrombotic drug-dicoumarol as a novel and potent PPARγ-modulating ligand. BIOORG CHEM. 2022 Oct;:106191  WB ;  Mouse.  
[IF=5.201] Chao X et al. miR-429-3p/LPIN1 Axis Promotes Chicken Abdominal Fat Deposition via PPARγ PathwayFront Cell Dev Biol.2020 Dec 21;8:595637.  WB ;  chicken.  
[IF=4.868] Wang L et al. Antiobesity, Regulation of Lipid Metabolism, and Attenuation of Liver Oxidative Stress Effects of Hydroxy-α-sanshool Isolated from Zanthoxylum bungeanum on High-Fat Diet-Induced Hyperlipidemic Rats. Oxidative Medicine and Cellular Longevity. 2019 ID 5852494.  IHC ;  Rat.  
[IF=4.545] Kai Kanget al. FGF21 attenuates neurodegeneration through modulating neuroinflammation and oxidant-stress. Biomed Pharmacother . 2020 Sep;129:110439.  WB ;  mouse.  
[IF=4.486] Ming Qiet al. Postnatal growth retardation is associated with intestinal mucosa mitochondrial dysfunction and aberrant energy status in piglets. J Cell Mol Med . 2020 Sep;24(17):10100-10111.  WB ;  pig.  
[IF=4.398] Xiaoyu Qu. et al. Integration of metabolomics and proteomics analysis to explore the mechanism of neurotoxicity induced by receipt of isoniazid and rifampicin in mice. NEUROTOXICOLOGY. 2023 Jan;94:24  IHC ;  Mouse.  
[IF=4.379] Tian, Mengyue. et al. The protective effect of licochalcone A against inflammation injury of primary dairy cow claw dermal cells induced by lipopolysaccharide. Sci Rep-Uk. 2022 Jan;12(1):1-9  WB ;  Cow.  
[IF=4.357] Li et al. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. (2015) J.Exp.Clin.Cancer.Res. 34:137  WB ;  Human.  
[IF=4.35] Songsong Jiang. et al. A Comparison Study on the Therapeutic Effect of High Protein Diets Based on Pork Protein versus Soybean Protein on Obese Mice. FOODS. 2022 Jan;11(9):1227  WB ;  Mouse.  
[IF=4.2] Yang, Wucai, et al. "Melatonin promotes triacylglycerol accumulation via MT2 receptor during differentiation in bovine intramuscular preadipocytes." Scientific Reports 7.1 (2017): 15080.  WB ;  Bovine.  
[IF=4.081] Liu Jiayi. et al. Lithium Chloride Promotes Endogenous Synthesis of CLA in Bovine Mammary Epithelial Cells. BIOL TRACE ELEM RES. 2023 Apr;:1-14  WB ;  Bovine.  
[IF=3.923] Manabe A et al.Upregulation of transient receptor potential melastatin 6 channel expression by rosiglitazone and all-trans-retinoic acid in erlotinib-treated renal tubular epithelial cells.(2018)J Cell Physiol.  ICC ;  
[IF=3.738] Zong, Jinxin. et al. Lithium Chloride Promotes Milk Protein and Fat Synthesis in Bovine Mammary Epithelial Cells via HIF-1α and β-Catenin Signaling Pathways. Biol Trace Elem Res. 2022 Jan;:1-16  WB ;  Bovine.  
[IF=3.69] Yaxin Zhang. et al. Dingxin Recipe IV attenuates atherosclerosis by regulating lipid metabolism through LXR-α/SREBP1 pathway and modulating the gut microbiota in ApoE-/- mice fed with HFD. J Ethnopharmacol. 2021 Feb;266:113436  
[IF=3.553] Man Luo. et al. miR136 regulates proliferation and differentiation of small tail han sheep preadipocytes. ADIPOCYTE. 2023;12(1):Article: 2173966  WB ;  Sheep,Human.  
[IF=3.545] Min Zhao et al. HuoXueTongFu Formula Alleviates Intraperitoneal Adhesion by Regulating Macrophage Polarization and the SOCS/JAK2/STAT/PPAR-γ Signalling Pathway. Mediators of Inflammation, 2019, 1–17.  WB&FCM ;  Rat&Mouse.  
[IF=3.514] Li B et al. Resistin up-regulates LPL expression through the PPARγ-dependent PI3K/AKT signaling pathway impacting lipid accumulation in RAW264. 7 macrophages.Cytokine. 2019 Jul;119:168-174.  WB ;  Mouse.  
[IF=3.412] Ma N et al. Cis-9, trans-11-CLA Exerts an Anti-inflammatory Effect in Bovine Mammary Epithelial Cells after E. coli Stimulation through NF-κB Signaling Pathway.(2018) J. Agric. Food Chem.  WB ;  Rat.  
[IF=3.375] Gao R et al. Three-dimensional-printed titanium alloy porous scaffold combined with trans-cinnamaldehyde for repairing osteonecrosis of the femoral head in a dog model. Am J Transl Res . 2020 Mar 15;12(3):1070-1079.  IHC ;  beagle dogs.  
[IF=3.234] Dong S et al. Dihydromyricetin alleviates acetaminophen-induced liver injury via the regulation of transformation, lipid homeostasis, cell death and regeneration. Life Sci. 2019 Jun 15;227:20-29.  WB ;  Mouse.  
[IF=3.231] Zhen Zhou. et al. Myogenic Determination and Differentiation of Chicken Bone Marrow-Derived Mesenchymal Stem Cells under Different Inductive Agents. ANIMALS. 2022 Jan;12(12):1531  WB ;  Chicken.  
[IF=3.231] Lijin Guo. et al. Chicken Protein S Gene Regulates Adipogenesis and Affects Abdominal Fat Deposition. ANIMALS. 2022 Jan;12(16):2046  WB ;  Chicken.  
研究领域 免疫学  信号转导  转录调节因子  激酶和磷酸酶  糖尿病  内分泌病  
抗体来源 Rabbit
克隆类型 Polyclonal
交叉反应 Human,Mouse,Rat (predicted: Rabbit,Pig,Sheep,Cow,Chicken)
产品应用 WB=1:500-2000,IHC-P=1:100-500,IHC-F=1:100-500,Flow-Cyt=1μg/Test,ICC/IF=1:100,IF=1:100-500,ELISA=1:5000-10000
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
理论分子量 57kDa
细胞定位 细胞核 
性    状 Liquid
浓    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human PPAR Gamma: 101-200/505 
亚    型 IgG
纯化方法 affinity purified by Protein A
缓 冲 液 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.
保存条件 Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles.
注意事项 This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMed PubMed
产品介绍 This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Additionally, PPAR-gamma has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis and cancer. Alternatively spliced transcript variants that encode different isoforms have been described. [provided by RefSeq, Jul 2008]

Function:
Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis.

Subunit:
Forms a heterodimer with the retinoic acid receptor RXRA called adipocyte-specific transcription factor ARF6. Interacts with NCOA6 coactivator, leading to a strong increase in transcription of target genes. Interacts with coactivator PPARBP, leading to a mild increase in transcription of target genes. Interacts with FAM120B. Interacts with PRDM16 (By similarity). Interacts with NOCA7 in a ligand-inducible manner. Interacts with NCOA1 LXXLL motifs. Interacts with TGFB1I1. Interacts with DNTTIP2. Interacts with PRMT2.

Subcellular Location:
Nucleus.

Tissue Specificity:
Highest expression in adipose tissue. Lower in skeletal muscle, spleen, heart and liver. Also detectable in placenta, lung and ovary.

DISEASE:
Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer.
Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.
Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.
Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.

Similarity:
Belongs to the nuclear hormone receptor family. NR1 subfamily.
Contains 1 nuclear receptor DNA-binding domain.

SWISS:
P37231

Gene ID:
5468

Database links:

Entrez Gene: 5468 Human

Entrez Gene: 19016 Mouse

Entrez Gene: 25664 Rat

SwissProt: P37231 Human

SwissProt: P37238 Mouse

SwissProt: O88275 Rat

Unigene: 162646 Human

Unigene: 3020 Mouse

Unigene: 23443 Rat



类固醇受体(Steroid Receptors)
过氧化物酶体增殖物激活受体γ(PPARγ)主要存在于白色脂肪组织,PPARγ对于脂肪生成、血糖稳定、炎症反应、动脉粥样硬化和肿瘤等的发生都起到重要的作用。主要在脂肪细胞内表达。PPARγ是噻唑烷二酮类药物(TZDs)作用的药靶,又是脂肪细胞分化的重要调节因子。经研究发现,PPARγ在肥胖及胰岛素抵抗的发病机制中具有十分重要的意义,是治疗糖尿病、肥胖等代谢性疾病的重要药靶。
过氧化物酶体增殖物激活受体γ(PPARγ)属Ⅱ型核受体超家族成员,主要在脂肪细胞内表达。PPARγ是噻唑烷二酮类药物(TZDs)作用的药靶,又是脂肪细胞分化的重要调节因子。现有研究(包括一次于美国加州大学进行的研究)发现PPARγ在肥胖及胰岛素抵抗的发病机制中具有十分重要的意义,是治疗糖尿病、肥胖等代谢性疾病的重要药靶。目前,该受体蛋白质水平的筛选模式已经建立,并正在建立该受体的报告基因的细胞水平筛选评价模式。
产品图片
Sample: Lane 1: Mouse Breast tissue lysates Lane 2: Mouse Lung tissue lysates Lane 3: Rat Adipose tissue lysates Lane 4: Rat Breast tissue lysates Lane 5: Rat Lung tissue lysates Lane 6: Human A431 cell lysates Lane 7: Human A549 cell lysates Lane 8: Human THP-1 cell lysates Lane 9: Human 293T cell lysates Primary: Anti-PPAR gamma (bs-0530R) at 1/500 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 57 kDa Observed band size: 52 kDa
Paraformaldehyde-fixed, paraffin embedded (mouse placenta); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (PPAR gamma) Polyclonal Antibody, Unconjugated (bs-0530R) at 1:200 overnight at 4°C, followed by operating according to SP Kit(Rabbit) (sp-0023) instructionsand DAB staining.
Tissue/cell: mouse lung tissue; 4% Paraformaldehyde-fixed and paraffin-embedded; Antigen retrieval: citrate buffer ( 0.01M, pH 6.0 ), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37℃ for 20 min; Incubation: Anti-PPAR Gamma Polyclonal Antibody, Unconjugated(bs-0530R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining
Tissue/cell: A549 cell; 4% Paraformaldehyde-fixed; Triton X-100 at room temperature for 20 min; Blocking buffer (normal goat serum, C-0005) at 37°C for 20 min; Antibody incubation with (PPAR gamma) polyclonal Antibody, Unconjugated (bs-0530R) 1:100, 90 minutes at 37°C; followed by a FITC conjugated Goat Anti-Rabbit IgG antibody at 37°C for 90 minutes, DAPI (blue, C02-04002) was used to stain the cell nuclei.
Blank control (blue line): U251 Primary Antibody (green line): Rabbit Anti-PPARG/PPAR gamma antibody (bs-0530R) Dilution: 1μg /10^6 cells; Isotype Control Antibody (orange line): Rabbit IgG . Secondary Antibody (white blue line): Goat anti-rabbit IgG-FITC Dilution: 1μg /test. Protocol The cells were fixed with 70% ethanol (Overnight at 4℃) and then permeabilized with 90% ice-cold methanol for 30 min on ice. Cells stained with Primary Antibody for 30 min at room temperature. The cells were then incubated in 1 X PBS/2%BSA/10% goat serum to block non-specific protein-protein interactions followed by the antibody for 15 min at room temperature. The secondary antibody used for 40 min at room temperature. Acquisition of 20,000 events was performed.
Blank control: A431. Primary Antibody (green line): Rabbit Anti-PPAR gamma antibody (bs-0530R) Dilution: 1μg /10^6 cells; Isotype Control Antibody (orange line): Rabbit IgG . Secondary Antibody : Goat anti-rabbit IgG-AF647 Dilution: 1μg /test. Protocol The cells were fixed with 4% PFA (10min at room temperature)and then permeabilized with 90% ice-cold methanol for 20 min at-20℃. The cells were then incubated in 5%BSA to block non-specific protein-protein interactions for 30 min at room temperature .Cells stained with Primary Antibody for 30 min at room temperature. The secondary antibody used for 40 min at room temperature. Acquisition of 20,000 events was performed.
版权所有 2004-2026 www.bioss.com.cn 北京博奥森生物技术有限公司
通过国际质量管理体系ISO 9001:2015 GB/T 19001-2016    证书编号: 00124Q34771R2M/1100
通过国际医疗器械-质量管理体系ISO 13485:2016 GB/T 42061-2022    证书编号: CQC24QY10047R0M/1100
京ICP备05066980号-1         京公网安备110107000727号